
MaizeDMX 3
User Manual

MaizeDMX is a simple and easy to use DMX lighting control software. As beginner
lighting operator or designer, you will find it’s perfect for your stage or event.

• Supports both ethernet and USB based DMX interface.

• Supports both macOS and Windows.

• Standard concepts like programmer, group, preset, cuelist and effect.

• JSON fixture profile that you can write.

• Sync audio with lighting cues with the sequence.

• Supports MIDI controller with javascript.

Page of 1 17

Overview

The MaizeDMX 3 main window is divided into two parts. The top part is called
workspaces, the bottom part is for controls.

You can create a number of workspace tabs on the top part. In each workspace, right
click on the empty area to add feature panels. You can resize and position the panels
any where you like. We will talk about different kind of feature panels in the following
chapters. (Use F1-F8 to quickly switch workspace tabs)

The control tabs at bottom show executers and parameter controls for selected
fixtures. (Use Alt + F1-F8 to quickly switch control tabs)

Now imagine you are creating a new project for a show, let’s go through each
component of MaizeDMX in a tutorial style.

Page of 2 17

Settings
The first tab you want to go is the “Settings” tab, which will always be the last
workspace tab.

Output

To really control fixtures with MaizeDMX, we support several different ways to send
DMX control data to fixtures:

• USB based DMX adapter: You can find these Enttec compatible devices under

FTDI or Serial. If you don’t see your USB DMX device there, please install usb to
serial drivers from here.

• Ethernet based DMX node: You can configure those under Artnet or sACN.

Patching

To patch (add) fixture to your project, click the “Fixtures” page on the left, and then the
“Patch new fixture” button on the right.

Page of 3 17

http://www.ftdichip.com/Drivers/VCP.htm

In the fixture type combo box field, you will only find dimmer which is the only fixture
type that is included with a new project. In order to add other types of fixture, you have
to click the browse button and locate its profile which is a JSON file. You can download
a collection of profiles from our website, but it won’t have everything in the world. If
you have a specific fixture to add, you may need to write it. (Don’t worry, it’s not that
hard)

The ID is the number that you will refer this fixture when programming, it has to be
unique for each fixtures.

The layer text field is a way to group fixtures together. Just write whatever you want
there.

Quantity means how many of this kind of fixture you want to add, MaizeDMX will
increase the ID, name and address automatically to differentiate the fixtures in this
batch.

Universe and address is the DMX address that this fixture has. Make sure it is the same
as given on the fixture.

After clicking patch button, you will see your fixtures in the fixture table. You can right
click on a field to edit its value anytime. Remember that you can also select multiple
rows and edit them at once.

Profiles

Page of 4 17

Want to create your fixture DMX profile now? Click the “Profiles” page on the left, then
you will see a JSON editor.

You can write your profile in our JSON format here or even better use an external text
editor to write it there so it can be saved and reuse in another project. See appendix for
a list of parameter type.

Fixture List
After adding your fixtures in settings tab, switch back the first workspace. You should
see a fixture list panel. It shows your fixture and their parameter states.

You can select fixtures by clicking the rows in the fixture list, or press command/ctrl + F
and then type in the fixture ID (you can also specify a range by using - as thru).

Page of 5 17

You can filter the fixtures by their layer name, check the combo box on the top right
corner.

After selecting some fixtures, you can change their parameters in the control tabs at
the bottom. The parameter you changed will be displayed as red. This is called
programmer value, it means it is not saved yet. If the parameter is coming from cuelist
playback, it is yellow. Otherwise it is grey as default.

To clear the selection, press ESC key once. To clear the programmer values, press ESC
again. All the red values will be lost.

Controls

Page of 6 17

As mentioned above, the bottom control tabs show all the parameters that you can
change with selected fixtures. The “controls” tab includes the quick access to the
common parameter types. All parameters are in the following categorized tabs.

Each parameter is represented as a knob, if it has options defined in it’s profile, you will
also see a list. You can click the number and type in the exact number (0-100) there, or
use mouse to control the knob. Hold ctrl/command for fine control.

Right click on a parameter knob, you will find more advanced control options, such as
setting the delay/fade timing, default and effect on that parameter.

Group and Preset
Select fixtures in the fixture list or by fixture ID and change their parameters one by one
is too much work sometime. To speed up the programming, group and preset are
introduced.

Group stores a set of fixtures, it helps you speed up your fixture selection. For
example, you can select all the beam fixtures and press an empty group cell. It stores
not only the fixtures but also the orders you select in to the group. Next time when you
want to re-select these fixtures, you can just press that group cell or press command/
ctrl + G and then enter the group number. The group does not have to be mutual
exclusive. But the selection are additive, that means if you keep re-calling different
groups, all of them will be selected. If you just want to select one group, you need to
clear your selection by press the ESC key first.

Preset is a way to store of set of parameter changes, you can later recall it back to the
programmer. For example, you selected one RGB LED fixture and dialed in a purple
color (RGB value) that you really like. You don’t want to do turn those parameter knobs
exactly like this one every time when you want that purple color. Then when the
changes are still in the programmer, press an empty preset cell to store it.

You may notice the category drop box on the top right corner of the preset windows.
Those are not just filters. They are different categories of presets. For example, color
category will only store color parameters. (All will store everything changed).

The greatest advantage of using preset is later when you store it in a cue, it’s still
referenced by preset not hard values. That means, you can later update the preset (by
right click on the cell) and then all your cues that refer to this preset will automatically
be updated.

Cuelist
OK, you have changed many parameters, they are in red and it looks pretty good. What
now? You want to save it some where.

Page of 7 17

Introducing the most important concept in MaizeDMX, cue list. As the name
suggested, it is a list of cues, and a cue stores the changes you just made. With the
changes in the programmer, press an empty executer button, it will create a new cuelist
with the current changes as the first cue, and assign it to the executer you clicked.

An executer is a set of controls to an object, it usually includes buttons and fader. The
first tab at the bottom shows you a bank of executers (10). Click the header of an
executer will make it the primary(selected) executer, which will be shown in a bigger
view at the bottom right corner of the window.

To see the content of this cuelist, check the cue list content panel:  

Page of 8 17

Each cue has the following properties that you can config:

• ID: this has to be unique for each cue, and it determines the order of cues. You can

append one decimal point to it, for example 1.1

• Name: right click on it to rename the cue.

• Trigger: Go or follow.

• Timing: Set the overall delay and fade time. Also the timing curve type.

• MIB: move in black. When enabled, it will move the position, color and gobo changes

to previous cue when possible.

• Category Timing: set timing information on each parameter category.

Press the space bar to go to next cue on the main executer, at this time you can clear
the programmer by press the ESC key two times, as the parameter values are coming
from cuelist playback now.

To create the next cue, change the parameters you need to change, and then press ctrl/
command + R to record another cue in the main cuelist. Repeat this until you have all
the cues that you need.

Tips: You can select cues and copy/paste them to other locations.

Click the “options” button at the bottom right, you will see the cruelest option
windows:

• Auto start: If it should go to the first cue the dimmer fader of this cuelist is raised.

• Auto off: If it should turn off the cuelist if the dimmer fader is lowered to 0.

• HTP: When other cuelist is controlling the same dimmer values, highest dimmer

value will win. Otherwise, the latest will win.

• Off time: How long does the dimmer value fade out when cuelist is turned off.

• Priority: When interacting with other plays, priorities are considered. High priority

cuelist won’t be turned off by turn off all executers command (ctrl/command + K).
Super priority is even higher than programmer values.

• Loop: If cuelist should go back to first cue instead of turning off after the last cue.

Page of 9 17

Executer
As we mentioned above, executer is a set of control (button and fader) to an object
(usually cuelist).

The first tab at the bottom of the window is a quick way to access different banks of
executer. You can also add executer panel into the workspace.

Right click on the header of an executer, you will see a popup. Executer can be
changed to button only mode, which only has one button. Otherwise, it has a fader and
three buttons. The action of the button and fader can be changed in the button mode
and fader mode sub menu.

Now you know everything to create a cuelist for each program/piece you are designing.
Assign them to executers. Select an executer as the main executer, and then just press
space bar as things happen on stage. You can also create some generic single cue
cuelist and assign them to executers, and then busking with faders and buttons.

Effect
What if we want a parameter keep changing in a pattern instead of a fixed value?
Effect engine is designed for that. There are two ways to add effect:

1. Temporary effect: After selecting the fixtures, right click on the control knob of the
parameter than you want to add effect, then choose effect… in the popup menu.
This adds effect just to that parameters.

2. Saved effect: In the effect panel in the workspace, click on an empty cell. This will
show the effect editor with multiple layers. You can apply and reuse this saved
effect on your selected fixtures.

Page of 10 17

In the effect editor, you can see a layer list on the left for saved effect. This means you
can have an effect that control multiple parameters at the same time. Let me explain
the details in effect editor:

• Fixtures: the fixture IDs that this effect line is designed to apply to. If empty, fixtures
have to be selected before apply the effect. Otherwise, simply click on the effect cell
will apply effect to these fixtures. The take selection button will copy the current
selection here. The shuffle button will randomize the fixture order, as you will see this
order is important when applying effect with different phases.

• Target: this is the parameter type that this effect is controlling.

• Source: the waveform that is controlling the parameter target, there is a list of presets

that you choose. However, you can always tweak the wave form in the waveform
editor as you like. On the right of the waveform, you can change its range from 0 to 1.

Page of 11 17

• Speed: how fast this effect run through the waveform. It is the BPM x Rate. If you
check the use speed master, it will use the master BPM speed x Rate.

• Oneshot: if checked, the effect will just run through the waveform once, not looping.

• Relative: if checked, the effect will be based on the parameter’s current value as the

base. The 0.5 line in the middle of the waveform will represent the base.

• Phase: the staring phase of the effect, range from 0 to 1. It can also be range like “0-

1“ or “0-1-0”, which means the fixtures will spread evenly between this range.

• Symmetric: if checked, the values will be flipped for the second half of the target

fixtures.

• Block: this indicates how many fixtures in the target should behave as the same

phase.

• Group: this indicates how many fixtures should be count as one phase cycle in the

spread.

Sequence
Cuelist is great, but what if you forget to press the space bar to go to next cue?
Synchronize lighting changes with music in sequence.

Add a panel of “sequences”, this shows all your existing sequences. Click on an empty
cell to create a new sequence. Then add the “sequence editor” panel, and select the
new sequence you created from the top right combo box to edit/view this sequence.

Page of 12 17

Click the “Audio” button, assign an audio file to this sequence and then you can see
the wave form of this file. Click play/pause or stop button to preview the music. Stop
the music, and check the “rec” box and then press play button to start record events
on the track. While the track is playing and the “rec“ check box checked, operate on
executers like you should. After it is done, press “Stop” button, you will see all the
events recorded or tweak their timing if needed.

Now during the show, you can just play this sequence and call it done. If you prefer the
audio guy to play the music, MIDI time code can be set to drive this sequence. (select
the MTC input from the combo box on the right).

Page of 13 17

Tips:

• Make sure you reset all the cuelists (ctrl/command + K) before you start recording or

playback of a sequence. This makes sure you have a clean base to start with.

• The audio playback device can be picked in the general section of the settings tab.

Controller
Use mouse and keyboard on executers can be slow. Do you have a MIDI controller
with fader and buttons? If so, great! You can support it by writing some javascript :)

In the controllers section of the settings tab, you can add any number of controller and
write or paste the supporting javascript in the code editor below.

First declare the MIDI input and output name that it should look for as:

	 var midiInput = “xxxx”;

	 var midiOutput = “xxxx”;

The callback functions that you can implement are:

Some objects and functions are provided for you to call, they can control some parts of
MaizeDMX:

function midiNoteOn(ch, note, velocity) called when MIDI note on are received on midiInput

function midiNoteOff(ch, note) called when MIDI note off are received on midiInput

function midiController(ch, type, value) called when MIDI controller messages are received
on midiInput

function currentPageChanged(bank) called current page of executer (in the first bottom
tab) is changed

function executerStatusChanged(bank, index) called when an executer’s status is changed

midi.noteOn(ch, note, velocity) send MIDI note on to midiOutput

midi.noteOff(ch, note) send MIDI note off to midiOutput

midi.controller(ch, controller, value); send MIDI controller message to midiOutput

ui.getCurrentPage() get current page of quick executers (in the first bottom tab)

Page of 14 17

Appendix

Fixture Profile Format
It’s in JSON format, check out the some example profiles that you can download from
our website. The majority of the description is about each parameter of the fixture, for
example:

{

 "type": “control.control",	 // All types are pre-defined strings

 "name": "switch",	 // Display name in the control tab

 "channel": 1,	 // This can be 16bit channel defined as “1, 2”

 “default”:0.5,	 // default value if not 0

 “highlight”:1,	 // value when the fixture is highlighted

 "options": {	 	 // With this option ranges, a list will be displayed next to the parameter knob

 “0-127":"off",

 “128-255":"on"

 }

 }

ui.getCurrentTime() get system time as milliseconds

ui.increaseParameterValue(index, delta) increase the #index parameter control on current control
tab by delta amount

ui.decreaseParameterValue(index, delta) decrease the #index parameter control on current control
tab by delta amount

ui.releaseParameter(index) release the #index parameter control value on current
control tab

ui.pageUp() increase page number of the quick executers

ui.pageDown() decrease page number of the quick executers

ui.control(index) switch control tabs

ui.workspace(index) switch workspace tabs

dmx.clear() just like you press ESC key

dmx.pressExecButton(bank, index,
buttonIndex, buttonUp)

press one of the button of an executer, buttonUp is an
optional boolean (true/false) to indicate this is a button
down or up event.

dmx.setExecFader(bank, index, value) set the fader value from 0 to 1 of an executer

dmx.setMasterDimmer(percent) set master dimmer value from 0 to 1 in float number

dmx.toggleBlackOut() black out button

Page of 15 17

Parameter types (all of these are self explanatory):

const CParameterType kParameterType_Dimmer_Dimmer = "dimmer.dimmer";
const CParameterType kParameterType_Dimmer_BackgroundDimmer = "dimmer.backgrounddimmer";
const CParameterType kParameterType_Dimmer_Curve = "dimmer.curve";
const CParameterType kParameterType_Dimmer_Shutter = "dimmer.shutter";
const CParameterType kParameterType_Dimmer_Strobe = "dimmer.strobe";

// eParameterCategory_Position
const CParameterType kParameterType_Position_Pan = "pos.pan";
const CParameterType kParameterType_Position_Tilt = "pos.tilt";
const CParameterType kParameterType_Position_PanContinuous = "pos.pancontinuous";
const CParameterType kParameterType_Position_TiltContinuous = "pos.tiltcontinuous";
const CParameterType kParameterType_Position_Speed = "pos.speed";

// eParameterCategory_Color
const CParameterType kParameterType_Color_Wheel1 = "color.color1";
const CParameterType kParameterType_Color_Wheel2 = "color.color2";
const CParameterType kParameterType_Color_Wheel3 = "color.color3";
const CParameterType kParameterType_Color_CTO = "color.cto";
const CParameterType kParameterType_Color_Cyan = "color.cyan";
const CParameterType kParameterType_Color_Magenta = "color.magenta";
const CParameterType kParameterType_Color_Yellow = "color.yellow";
const CParameterType kParameterType_Color_Red = "color.red";
const CParameterType kParameterType_Color_Green = "color.green";
const CParameterType kParameterType_Color_Blue = "color.blue";
const CParameterType kParameterType_Color_Amber = "color.amber";
const CParameterType kParameterType_Color_White = "color.white";
const CParameterType kParameterType_Color_WarmWhite = "color.warmwhite";
const CParameterType kParameterType_Color_CoolWhite = "color.coolwhite";
const CParameterType kParameterType_Color_Orange = "color.orange";
const CParameterType kParameterType_Color_Lime = "color.lime";
const CParameterType kParameterType_Color_Indigo = "color.indigo";
const CParameterType kParameterType_Color_UV = "color.uv";
const CParameterType kParameterType_Color_Hue = "color.hue";
const CParameterType kParameterType_Color_Saturation = "color.saturation";

// eParameterCategory_Focus
const CParameterType kParameterType_Focus_Zoom = "focus.zoom";
const CParameterType kParameterType_Focus_ZoomRotation = "focus.zoomrotation";
const CParameterType kParameterType_Focus_Focus = "focus.focus";
const CParameterType kParameterType_Focus_AutoFocus = "focus.autofocus";

// eParameterCategory_Gobo
const CParameterType kParameterType_Gobo_Gobo1 = "gobo.gobo1";
const CParameterType kParameterType_Gobo_Gobo1Rotation = "gobo.gobo1rotation";
const CParameterType kParameterType_Gobo_Gobo2 = "gobo.gobo2";
const CParameterType kParameterType_Gobo_Gobo2Rotation = "gobo.gobo2rotation";
const CParameterType kParameterType_Gobo_Gobo3 = "gobo.gobo3";
const CParameterType kParameterType_Gobo_Gobo3Rotation = "gobo.gobo3rotation";
const CParameterType kParameterType_Gobo_Animation = "gobo.animation";
const CParameterType kParameterType_Gobo_AnimationRotation = "gobo.animationrotation";
const CParameterType kParameterType_Gobo_AnimationRotation2 = "gobo.animationrotation2";
const CParameterType kParameterType_Gobo_AnimationProgram = "gobo.animationprogram";

// eParameterCategory_Beam
const CParameterType kParameterType_Beam_Frost = "beam.frost";
const CParameterType kParameterType_Beam_Iris = "beam.iris";
const CParameterType kParameterType_Beam_Prism1 = "beam.prism1";
const CParameterType kParameterType_Beam_Prism1Rotation = "beam.prism1rotation";
const CParameterType kParameterType_Beam_Prism2 = "beam.prism2";
const CParameterType kParameterType_Beam_Prism2Rotation = "beam.prism2rotation";

// eParameterCategory_Shape

Page of 16 17

const CParameterType kParameterType_Shape_Preset = "shape.preset";
const CParameterType kParameterType_Shape_PresetSpeed = "shape.presetspeed";
const CParameterType kParameterType_Shape_PresetFade = "shape.presetfade";
const CParameterType kParameterType_Shape_FrameAngle = "shape.frameangle";
const CParameterType kParameterType_Shape_Blade1 = "shape.blade1";
const CParameterType kParameterType_Shape_Blade1Angle = "shape.blade1angle";
const CParameterType kParameterType_Shape_Blade2 = "shape.blade2";
const CParameterType kParameterType_Shape_Blade2Angle = "shape.blade2angle";
const CParameterType kParameterType_Shape_Blade3 = "shape.blade3";
const CParameterType kParameterType_Shape_Blade3Angle = "shape.blade3angle";
const CParameterType kParameterType_Shape_Blade4 = "shape.blade4";
const CParameterType kParameterType_Shape_Blade4Angle = "shape.blade4angle";

// eParameterCategory_Control
const CParameterType kParameterType_Control_Control = "control.control";
const CParameterType kParameterType_Control_Reset = "control.reset";
const CParameterType kParameterType_Control_Program = "control.program";
const CParameterType kParameterType_Control_ProgramSpeed = "control.programspeed";
const CParameterType kParameterType_Control_ProgramFade = "control.programfade";
const CParameterType kParameterType_Control_Haze = "control.haze";
const CParameterType kParameterType_Control_Fan = "control.fan";

Page of 17 17

	MaizeDMX 3
	Overview
	Settings
	Output
	Patching
	Profiles
	Fixture List
	Controls
	Group and Preset
	Cuelist
	Executer
	Effect
	Sequence
	Controller
	Appendix
	Fixture Profile Format

